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' 2. Theoretical predictions are compared to experimental data and used to re-calibrate
O : o the pressure scale used in experiments.
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)l o, 3. Understanding the stress-strain state of the diamond anvil cell.
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(UI the diamond anvil can be extracted by ga - Iqadmg axis (0} and along the radial
ﬂl inverting Eq. 1. v | e direction (o), and shear stress 7, as a
3: ool = e function of the pressure A, in the sample,
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1. We were able to determine the stress state of the diamond anvil in ultra-high-
pressure experiments by combining theoretical and experimental data.

2. The maximum shear stress determined for loading along [001] is large but still
considerably below the theoretical limit for the onset of an elastic instability (T,,4, =
200 GPa) for uniaxial compression along the cubic axis3.

3. We found that shear stresses close to the tip of the anvil can reach values
exceeding 1 Mbar.
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